Tuesday, January 29, 2019

URSP Student Farbod Moghaddam Supports Research on the Development of Low Cost, Wireless, High Performance Electrochemical Sensors

My name is Farbod Moghaddam and I am senior majoring in Mechanical Engineering. I have been an Undergraduate Research Assistant at the Kang Lab for Micro/Nano Mechanics and Photonics with 2D materials since September 2017 supporting research on the development of low cost, wireless, high performance electrochemical sensors using graphene and radio frequency identification technology. During my freshman year, my research proposal to develop graphene-based supercapacitors as an alternative method of energy storage ranked top three in the inaugural Mechanical Engineering Research Proposal Competition and ever since then I have been fascinated with the wonder material that is graphene. 

My research focuses primarily on developing 3D porous graphene nanostructures with pore sizes of less than 2 nanometers in diameter (the average human hair strand is 100,000 nanometers) to better adsorb gas molecules. The novel method of graphene synthesis practiced at our lab relies on the carbonization of an organic polymer with a favorable composition through a laser process. The resulting material, commonly referred to as laser induced graphene, is transfer and catalyst free making it favorable for electronic applications since the conductivity is not comprised due to defects which typically occur during the synthesis process. Additionally, this method of synthesis allows for engineering of 3D porous structures through adjustment of laser power. There are two methods through which gas molecules interact with graphene: chemical adsorption (chemisorption) and physical adsorption (physiorption). One can think of physiorption as a net that physically entraps the gas molecules, which is why the 3D porous structure is so beneficial due to the high surface area to volume ratio it provides, whereas chemisorption is the chemical interaction causing the graphene to “grab” onto the gas molecules. Although the 3D porous graphene responds to the presence of all polar gases, selectivity towards certain gases can be induced through embedding reactive metals before the carbonization process. Therefore, this project long term goal is to provide the scientific community with a low cost, high performance gas sensing platform to build upon.

Every week, my team and I meet with our mentor to provide updates on recent experimental findings from the work done at the lab during the previous week and to discuss potential steps forward. Throughout this past semester (Fall 2018) I have conducted experiments with various concentrations of palladium functionalized 3D porous graphene and acetone (CH3) to determine general response trends. Palladium is highly reactive with hydrogen gas (H2) and through monitoring the change in resistance before and after exposure to acetone, it was determined that graphene samples with higher concentrations of palladium responded quicker to the presence of gas molecules and had a greater increase in resistance.

Upon graduation in Spring 2019, I hope to pursue my interest in nanotechnology and passion for research by pursuing a PhD in Mechanical Engineering with a particular focus on energy storage methods, heat transfer, and development of biomedical devices.