Thursday, October 20, 2016

URSP Student Francisca Wood Ortiz Researches Tissue Engineering and Microfluids

My name is Francisca Wood and I am a senior studying biomedical engineering. I currently work under Dr. Agrawal at the µ-SCALE lab in Krasnow, which focuses on tissue engineering and microfluidics. Once I complete my undergraduate studies, I would like to pursue my Ph.D. in Bioengineering. It is possible that I will continue to work with Dr. Agrawal and pursue my graduate studies here at George Mason.

Microdialysis is a sampling procedure used for measurement of molecules in the interstitial fluid (ISF), the environment that surrounds cells. ISF contains a lot of information about the state of the cells and body. Unfortunately, current microdialysis techniques only allow small concentrations to be captured and analyzed, and these concentrations are sometimes too small to measure. If more biomarkers could be collected from the ISF, scientists would be able to gain a superior understanding of the milieu intérieur. The opportunity to improve our overall understanding is what has driven me to pursue this project.

My project focuses on the improvement of the microdialysis technique by use of hydrogels. Hydrogels are porous polymer networks that have the ability to retain a large amount of water. The premise is to fill a small microcapillary tube with a hydrogel and to insert it into a solution for an extended length of time to allow biomarkers to adsorb into the gel.

This week, I tested two different hydrogels to compare their adsorption kinetics. The hydrogels were placed in a solution containing fluorescein, a fluorescent dye, for 3 hours. These 2 hydrogels contained different concentrations of suspended nanoparticles, which were also responsible for absorbing the dye. The two hydrogels were then imaged using fluorescence microscopy. It was discovered that the hydrogel containing a greater ratio of nanoparticles to gel adsorbed less of the dye.

Once the hydrogel is optimized, I will test the hydrogel in different solutions containing different biomarkers, before moving to animal tissue.